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STABILITY OF MOTION OF IMPACT TOOLS

C. C. Fu and B. PauL

Ingersoli-Rand Research, Inc., Box 301, Princeton, New Jersey

Abstract--A method is developed for analyzing the rigid body dynamics of machines wherein a hammer is made
to reciprocate within a housing and to periodically impact against a bit, moil, anvil or other energy absorbing
member. The physical system is idealized and represented by a “floating™ two-body model. It is found that two
simple steady-state motions could exist. It was also found that the floating two-body model theoretically admits
one stable steady-state solution which has the same period as the exciting force and exhibits only one impact per
cycle of the steady-state motion. Stability regions of the simple steady-state solutions are determined.

A separate computer solution was constructed to predict the detailed history of the system’s motion. The
computer results indicate that the analytical steady-state solutions are stable only for extremely small disturbances.

1. INTRODUCTION

AN idealization of a reciprocating hammer impact tool is shown schematically in Fig. 1,
where m, represents the tool case, m, represents the hammer, H is a constant down-force,
the actuator provides a steady force P, and an oscillatory force of amplitude P, and fre-
quency w/27n, acting between the case and hammer. The hammer would, in a real tool,
impact against a bit. The bit has been replaced, in the idealization, by an energy sink, the
details of which will be described later.
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FiG. 1. Schematic of reciprocating hammer impact tool.

Because the impact occurs when the absolute displacement of the hammer reaches a
specified value, rather than at a predetermined time, the problem is essentially nonlinear.
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However, it is possible to construct synchronous (that is, of the same period as the exciting
force) steady state solutions of the system by utilizing the piecewise linearity of the govern-
ing equations which prevail before and after impact occurs. The authors, together with a
colleague, D. L. Sikarskie, found that two such synchronous steady solutions were possible,
but because of nonlinearity of the system (which gives rise to the nonunique solution) there
is no assurance that either of the two predicted states can persist. A necessary condition for
a given steady-state process to persist in a real system is that the system, in the presence
of small random disturbances, shall stay sufficiently close to the given steady-state motion
for all time. If, furthermore, the small disturbances, due to external forces, eventually
fade away, the given steady-state motion is said to be asymptotically stable.

In this paper the asymptotic stability of the two-body system is considered. The analysis
is parallel to a previous discussion of a similar problem, involving a one-degree-of-freedom
system [1].

Regions in which stable steady-state solutions exist are determined. The stability regions
provide guidance for a designer to choose design parameters which will result in a stable
operating impact tool.

A separate computer solution has also been constructed to confirm the stability analysis.

2. EQUATION OF MOTION AND GENERAL SOLUTION

The equations of motion of the two-body system, between impacts, are,

d2

mld—tle-+K(x1—x2)=P0+P, cos(wt +o)—H (1)
d*x,

mz*d;z—*- K{x,—x;) = — Py— P, cos{wt +a)—(m, +m,)g 2)

where all the quantities are defined in Fig. 1, except o which is an arbitrary constant to be
defined later.
In terms of the nondimensional quantities

vy = Kx,/P{. v; = Kx,/Py, R = Py/P,, F = H/P,, G, = mg/Py,

K(m, +m,)|* .
G, = m,g/P,, H=my/msy, Wy = [_.(m_lm_z_)} , A= wlw, and 1T = wyt,
17962

the general solution to the above equations, for 1 # 1, is

1
yy = Cysin 1+ C4 cos T*‘mCOS(ZT‘}—a)
(3)
—E(T%W(FWLGI +G )t +Cit+Cy+Cy.

V2 = —y[(} sint+ 4 co8 T+ cos(;tr+a)+C0]

i
1+ -2
U
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where C,, C,, C;, and C, are the four integration constants and,

R+G, F
T+p  (1+p*

0=

3. SIMPLE STEADY-STATE SOLUTION

It will be assumed that the case never impacts against the fixed surface, and that a steady
state motion is ultimately achieved. We are particularly interested in those steady-state
motions which have the same period (2r/4) as the exciting force, and which exhibit only one
impact per cycle of the exciting force. Such a “‘simple” steady-state solution can be con-
structed by further assuming that the impact occurs instantaneously and can be fully
described by a single parameter e, which is referred to as the “‘effective coefficient of restitu-
tion” for the system. Therefore, it is assumed that upon impact the second mass is instan-
taneously stopped and has its speed changed from V to eV and its direction reversed.
Conditions to be satisfied are:

y2000=0 g
Y2(0) = eV3q = E‘;) (5)
¥100) = y10
)}1(0) = V10
y2(2m/4) =
V22n/2) = — V3o ©)
y1n/A) = yi0
)51(271//1) Vio

where

Va0 = VK/P,w,.

It is now clear that the value of a is determined by the condition that impact is assumed to
occur at ¢ = 0 and 2n/A.
A substituion of equations (3) and (4) into equations (5) gives,

1
C = T+a (V20 +uV10)

_*
1+pu
1

1+

2= Y10

(7

A
C3 = (VIO eV20+1 /12 sin a)

1 1
C, = 1+p(y1°_1—/12 cosa)-—Co.
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Using equations (6) we can eliminate the unknown quantities y,,, V;,, and V,,, to obtain

C, = A(l-i— )2(F+G {+G,)
n cos o
Cy=u|l -Cycot-+———5+C
2 “[ T =) "] ®
Cy=-C,
7
w= —C,cot—
C, 1 €O 7
: (1 —e)(1~2%)
= . 9
sin o 1+9 (F+G+Gy) ©)
For the steady-state solution to exist, it is necessary that
Vae 2 0,
yi{t) =0 forallr, (10)

yo{t) =0 forallr.

Note that if A = 1/n, where n is a positive integer greater than unity, we have
cot{n/A) — oo and the values of C, and C, approach infinity. However, solutions which
correspond to A = 1/n are all inadmissible because of equation (10). Therefore resonance
occurs only at 4 = 1.

4. STABILITY OF SIMPLE STEADY-STATE SOLUTION

A given steady-state solution is said to be asymptotically stable or unstable if slight
perturbations decay or grow as time goes on (i.c. time — o).

Following [1], let us consider that the system has been perturbed by a small impulsive
force which makes it depart momentarily from the simple steady-state solution. The per-
turbed solution will now be found.

Equation (7) shows the dependence of the constants C; (i = 1,2, 3, and 4) on the initial
values of a, V,4, ¥1¢,and V. Let us consider small perturbations Aa, AV,, Ay,, and AV,
on the initial values. The motion of the perturbed state is given by equations (3) and (4),
with C; replacing C,, where

ac, ac, aC, ac,
"= —L Ay, LAV, +
C; C"LanAVi Sy Ay gAY+ A

(11)

-+ higher order terms
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Using equation (7) and neglecting the higher order terms, we find
C = C1+ (eAV2+ﬂAV1)

u

=C
2+1+

Ay,
(12)

Cy=Cyt+—ro

A
i (AVI —eAV, + -2 cos ocAa)

a=Ci+

1 1
A in aAa).
1+ﬂ( y1+1_lzsma cx)

Equations (3) and (4), with C; replacing C;, hold true until the time when the second body,
m,, strikes the fixed surface. Let this particular time be given by wyt = t = T i.e,,

yAT) =0, (13)
yi(T) = y10+4y) (14)
yiT) = Vio+AV; (15)
y2T) = — (Voo +AV?). (16)
The value of « also changes to o+ Ax’. Then,
T= 27n+Aoc'—Aa. (17

Equations (13) to (16) give four equations for the four unknowns Aa’, AV, Ay;, and AV
in terms of the original perturbations Aa, AV,, Ay,, and AV, . These equations, in general,
contain trigonometric terms of arguments a+ Aa, a+ Ao, 21/A+ Aw, 21/A+ Ad/, etc. If we
expand all these terms in powers of Ax and Aa’, we obtain the system of linear equations

AV Py PyP3Py, | | AV,
Ay, _ Py Py Py3Py, Ay, (18)
AV, P3Py, P33Py, | | AV,
Ao’ P4y PiyPysPya A
Let us define:
1 2n
Bl = m sin 7
1 (2n . 2=n
Ba =7 ,1)
1 [2=n 2n
B; = ——1+“-E+sm7
B. = 1 2nu+ in 2n
T 14\ 2 A
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We find,
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1 2n
By = ——1—
S 1o €os —
1 2n
BG=——1+; u+c057)
11 2n
B; = ——|—+cos —
T T+ plp A

1
Bg = W(AB1 cos oo — B sin a)

1
By = 1—7(B1 sin oo+ AB;5 cos o)

Acos a 1 1 n
e — —— t_
Pro (1+u)(1-—/12)+cl(1z 1% 1)

_(+m(i-e)
Pro="utrg C
Ay cos a

(A +m(1-2%)

P M1+e)
0T 214+ e,

1
Cl(—+ﬁcotz)
71'

Pso = PR

Pyy = AuB, Py

P,y = AuBsPyo

P,3 = deuB3Pyq

Pyy = 1 —puBgPyy

Py, = —uBs— P3Py,
Py, = puB, —P3oPy;
P33 = epB, — Ps3oP,4

1
Py, = 1[—#B9+P30(1_P44)]

P,y = B4+ PyoPy,y
P32 = Be+ PyoPy,
P23 = eBz+P20P43

1
Py = E[BB+P20(P44‘ 1)]

Py, = Bs—P10P41

(19)
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PlZ = _BI_P10P42
Py = eBs— PPy,

1
P = I[-B9+P10(1“‘P44)]-

We now think of the initial perturbations AV,, Ay,, AV,, and Aa as components of a
vector. After the first impact the perturbations for the next cycle of motion are given by a
vector of components (AV, Ay}, AV5, A'), which are determined from equations (18}, ie,,

{AVY, Ay, AV, Ad'} = [P1{AV,, Ay, AV, Aa};

after the second impact they are given by,
{AVY, Ay{, AV, Aa”} = [PY{AV, Ay, AV, Aa'}
= [P1{AVy, Ay,, AV, Ad,

etc. If the vector [P]*{AV}, Ay,, AV,, Aa} tends to zero as n approaches infinity, the per-
turbed solution approaches the steady-state solution and the solution is said to be asymp-
totically stable. It should be observed that only first order perturbation terms were retained
in equation (11). However, Masri and Caughey [2] proved that the first order terms do
indeed govern the asymptotic stability of systems of this type. Using a proof parallel to
that of [1] and [2], one can show that asymptotic stability is insured by the condition that
the modulus of each eigenvalue, Q,, of the matrix P is less than one and instability follows
from the condition that at least one of the moduli of the eigenvalues is greater than one,
i.e., the solution is asymptotically stable, if

01 <1 fori=1,2,3,and4
and asymptotically unstable, if
Q) >1 fori=123o0r4.
Q; are determined by the equation
[P;;—Qd;] = 0. 20

5. NUMERICAL EXAMPLES AND DISCUSSION

As a numerical example we choose the parameters: F = 045, R = 1-16, G, = 0-331,
and G, = 0029, and seek regions of the e-4 plane in which the analytically constructed
solutions are asymptotically stable.

It has been pointed out that for a given set of values of e and 4, there exists, in general,
two branches of solutions. This is simply because the value of a enters into the analysis
through equation (9) in the form of sin &, which does not define the value of « uniquely.
If oq is a solution, then 7 —a, is also a solution. Let us assume that the first branch of solu-
tions is associated with a,, where —7/2 < o, < 7/2, and the second branch with n—a,.

By examining the eigenvalues we have found that the first branch of the two solutions
is always unstable, for all values of e and A investigated, (0 < 4 < 5;0 < e < 1). For the
second branch of the solution, narrow stability regions in the e-4 plane have been found
and are shown in Fig. 2. These numerical results were carried out by a digital computer.
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The eigenvalues of the matrix P are determined using a subroutine obtained from SHARE

(31
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Fi1G. 2. Regions of stable simple steady-state solutions.

(Stable regions shown shaded with vertical lines are found from stability analysis. Points x, o are found from the computer
solution of the initial value problem.)

6. A COMPUTER SOLUTION

A computer program was written to directly determine the four integration constants
of equations (3) and (4). First, one starts with an arbitrary set of initial values which deter-
mines the four constants. The motion is then followed until the time when y, = 0 occurs.
The values of ¥;, y,, and y, are next computed at that particular time. Multiplying the
value of y, by (—e) together with the other calculated values provide a set of new initial
conditions from which one can determine the four constants C; of equations (3) and (4)
anew. The process is repeated over and over so0 as to obtain the time behavior of the system.

The computer solution can be used to provide a check on the stability results. Several
points, as shown in Fig. 2, have been checked and the computer results agree with the
theoretical predictions on stability.

Here we point out, however, that the stability of the system is very “weak” in the sense
that a solution is stable only for extremely small perturbations.

7. CONCLUSIONS

Asymptotic stability of the simple steady-state motion for a two-body dynamic system
subjected to repeated impact conditions has been formulated and analyzed. Narrow sta-
bility regions have been found. A separate computer solution, however, indicated that all
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the stable solutions stay stable only for extremely small perturbations. Therefore, we
conclude that, although narrow stability regions can be found, the simple steady-state
motion of the system is essentially unstable from a practical point of view. If one wishes to
design such a “floating”™ system, one should not expect a steady-state motion which has
the same period as the exciting force and which exhibits only one impact per cycle of the
steady-state motion.

Practical impact tools incorporate ‘“‘stops” on the case which will impact the bit (or
“fixed surface”, in our idealization) from time to time, and may have a wider range of
stable operating conditions than the “floating’ system which was analyzed in this paper.
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AGcTpakT—OnpenenseTcd METOA pacyeTa AMHAMHKH TBEPAOrO Teja AJIA MAlIMH, B KOTOPBIX MOJIOT HMEET
BO3BPATHO-NIOCTYIATE/ILHOE ABHKCHHE BHYTPH KOPIYyCa H ejiaeT NEPUOAHYECKH yaap Ha CBEpJO, AONOT-
yuThiE 6Yp, HAKOBANLHIO, HJIH HAa APYro# wWieH, morjawjaioiiuit suepruro. Mpeanupusyercs pu3udeckas
cucreMa, Koropas mnpeacrapiaser coboit ‘‘mnaearonlyro’’ Mopenbk ABYX Tesl. B DaHHOM ciydae MOTYT
AeHCTBOBATH IBA HNPOCThIE YCMAHOBHBMHMECH ABHXKEHHA. Onpeaensercd, Takxe, 4TO IUIaBalollas MOJE/Ib
ZBYX TeJI MOMYCKAeT TeOPEeTHYECKH OJHO YCTOMUMBOE YCMaHOBHBMEECA DellieHHe, KOTopoe obnanaer Takum
XKe MEPHOAOM KosleOaHui KaK H BHIHY)XIAIOWIANA CHNA M HOIMYCKAET TOJABKO OOHH yIap B LUKJI YCMAHOBHB-
Merocst asukeHHs. OnpeensioTcs PaloHbl YCTOMYMBOCTH MPOCTHIX YCMAHOBHBMUXCH PELUEHMI.

Haitneno oTaenbHOE pelieHKe A1 BLIYUCIMTENbHBIX MALLUHH, C LIEJIBIO ONPeNe/IeHHs NeTaTbHOR HCTOPHH
JABHIKEHMS CUCTEeMBI. Pe3ynbTaThl yKa3blBalOT, YTO AHAJIHTHYECKHE YCMEHOBHBMMECS DELUCHHUS SIBJISHOTCH
YCTORYMBBLIMH TOJIBKO IJIsi KpPaHE MaJTbiX BO3MYLUCHHIA.



